ÜBER NITROSYL-METALL-KOMPLEXE

XV*. DIE REAKTION VON ORGANOKOBALT-VERBINDUNGEN MIT NO UND OLEFINEN--EINE NEUE DREIKOMPONENTENSYNTHESE

HENRI BRUNNER und STEPHAN LOSKOT Fachbereich Chemie der Universität Regensburg (Deutschland) (Eingegangen den 6. März 1973)

SUMMARY

 $[C_5H_5Co(NO)]_2$ as well as $C_5H_5Co(CO)_2$ react with NO and olefins of the norbornene type with the formation of the new complexes $C_5H_5Co(NO)_2$ olefin. A large variety of olefins can be used in this new three component synthesis. In the complexes $C_5H_5Co(NO)_2$ olefin the dinitroso compound, formed from 1 mole olefin and 2 moles NO, acts as a ligand. Upon addition of the two NO groups to the double bond of the bicyclic ring system, the olefinic protons assume the *endo*-position. The stereochemistry of the new complexes is deduced from the analysis of the ¹H NMR spectra of suitably substituted compounds with the application of double resonance. The chemical shifts, coupling constants, IR spectra and mass spectra of the new complexes are given in addition to the analytical data.

ZUSAMMENFASSUNG

 $[C_5H_5Co(NO)]_2$ bzw. $C_5H_5Co(CO)_2$ reagieren mit NO und Olefinen vom Norbornen-Typ unter Bildung der neuen Komplexe $C_5H_5Co(NO)_2Olefin$. In diese neue Dreikomponentensynthese kann eine Vielzahl von Olefinen eingesetzt werden. In den Komplexen $C_5H_5Co(NO)_2Olefin wirkt die aus 1 Mol Olefin und 2 Mol NO$ gebildete Dinitroso-Verbindung als Ligand. Bei der Addition der beiden NO-Gruppen an die Doppelbindung des bicyclischen Ringsystems gehen die olefinischenProtonen in die*endo*-Stellung über. Die Stereochemie der neuen Komplexe ergibtsich aus der Analyse der ¹H-NMR-Spektren geeignet substituierter Verbindungenunter Verwendung der Doppelresonanz. Die chemischen Verschiebungen, Kopplungskonstanten, IR-Spektren und Massenspektren der neuen Komplexe sind neben denanalytischen Daten angegeben.

EINLEITUNG

Wie bereits kurz berichtet², bilden die Komplexe $C_5H_5Co(CO)_2$ und $[C_5H_5-$

* XIV. Mitteilung siehe Ref. 1.

 $Co(NO)]_2$ bei der Umsetzung mit NO und Olefinen vom Norbornen-Typ Verbindungen der Zusammensetzung $C_5H_5Co(NO)_2Olefin^{3,4}$. Im folgenden werden Darstellungsmethoden, Eigenschaften und spektroskopische Daten dieser neuen Komplexe beschrieben.

DARSTELLUNG UND EIGENSCHAFTEN DER KOMPLEXE C5H5Co(NO)2Olefin

Leitet man NO durch eine Lösung von chromatographisch gereinigtem C_5H_5 -Co(CO)₂ in Hexan, so entsteht $[C_5H_5Co(NO)]_2^5$. Destillativ gereinigtes C_5H_5Co- (CO)₂ dagegen führt bei der Umsetzung mit NO zu einem Komplex der Zusammensetzung $C_{15}H_{17}CoN_2O_2$. Für die Entstehung der neuen Verbindung erscheint somit

C₅H₅Co(NO)₂Olefin

eine Verunreinigung in C₅H₅Co(CO)₂ verantwortlich, die sich destillativ nicht abtrennen lässt. Dies weist auf das Diels-Alder-Dimere von Cyclopentadien (VI) hin, das sich bei der Darstellung von C₅H₅Co(CO)₂ bildet^{6.7} und im Rohprodukt bis zu 20% enthalten ist⁸. Setzt man chromatographisch gereinigtem C₅H₅Co(CO)₂ Dicyclopentadien (VI) zu, so unterbleibt bei der Umsetzung mit NO die Bildung von [C₅H₅Co(NO)]₂, und es entsteht ausschliesslich C₁₅H₁₇CoN₂O₂(C₅H₅Co(NO)₂-Dicyclopentadien). Bei Verwendung von Methylenchlorid als Lösungsmittel kann auch [C₅H₅Co(NO)]₂ anstelle von C₅H₅Co(CO)₂ als metallorganischer Reaktionspartner in die Dreikomponentensynthese eingesetzt werden (Gl. 1). Als olefinische

UBER NITROSYL-METALL-KOMPLEXE

Komponenten dienten ausser Dicyclopentadien verschiedene Olefine vom Norbornen-Typus (I)-(VIII). Ihre Auswahl erfolgte hauptsächlich unter dem Gesichtspunkt einer ¹H-NMR-spektroskopischen Strukturaufklärung der Komplexe C_5H_5 Co-(NO)₂Olefin.

TABELLE 1

Komplex		Gef. (Ber.) (%)						
		С	H	N	Со	GeJ. (Ber.)		
C ₅ H ₅ Co(NO) ₂ C ₇ H ₁₀	(XI)	51.82	5.46	10.03	21.04	292		
		(51.81)	(5.44)	(10.07)	(21.19)	(278.2)		
$C_{5}H_{5}C_{0}(NO), C_{11}H_{14}O_{4}$, (XII)	48.64	4.86	6.97	15.22	400		
	,	(48.74)	(4.86)	(7.10)	(14.95)	(394.3)		
C ₄ H ₄ Co(NO) ₂ C ₇ H ₈	(XIV)	52.15	4.72	9.95	21.68	275		
		(52.19)	(4.73)	(10.14)	(21.34)	(276.2)		
$C_5H_5C_0(NO), C_1, H_{1,2}O_2$, (XV)	48.99	4.25	7.00	`15.02´	ີ 397 ່		
		(48.99)	(4.37)	(7.11)	(14.95)	(392.3)		
C.H.Co(NO),C.,H.,	(XVI)	` 57.21 [´]	6.01	8.55	18.77	321		
5 5 ()2 10 12	. ,	(56.97)	(5.42)	(8.86)	(18.64)	(316.3)		
[C.H.Co(NO),],-	(XVIII)	37.50	3.30	6.66	`I4.22 [´]	848		
$C_{14}H_{12}O_6Br_2\cdot\frac{1}{3}C_6H_{12}$	/	(37.52)	(3.15)	(6.73)	(14.16)	(832.2)		

ANALYSEN UND MOLGEWICHTE DER KOMPLEXE (XI), (XII), (XIV)-(XVI) UND (XVIII)

^a Osmometrisch in Benzol.

Während die Monoolefine (I) und (II) die Komplexe (XI) und (XII) ergeben, lässt sich Bornylen (III) unter den Bedingungen der neuen Dreikomponentensynthese nicht in den entsprechenden Komplex (XIII) überführen. In den Diolefinen (IV)-(VII) wird jeweils nur eine Doppelbindung angegriffen, und zwar in (V) bzw. (VII) die unsubstituierte sowie in (VI) die gespannte Doppelbindung. Im Diolefin (VIII) dagegen reagieren beide Doppelbindungen. Die analytischen Daten und Molgewichte der neuen Komplexe (XI), (XII), (XIV)-(XVI) und (XVIII) sind in Tabelle 1 zusammengestellt. Verbindung (XVII) wurde nur ¹H-NMR-spektroskopisch charakterisiert.

Die Komplexe $C_5H_5Co(NO)_2Olefin$ bilden dunkle Kristalle, die sich in chlorierten Kohlenwasserstoffen, Aromaten und Äthern mit tiefroter Farbe lösen. Nur gering hingegen ist ihre Löslichkeit in Alkoholen und Alkanen. Die Verbindungen liegen in Benzollösung monomer vor. Die neuen Komplexe sind in fester und gelöster Form praktisch luftstabil. Von Triphenylphosphin und Bis(diphenylphosphino)methan werden sie selbst in siedendem Toluol nicht angegriffen. Mineralsäuren, Lithiumalanat und Jod dagegen reagieren rasch mit den Komplexen.

DINITROSO-STRUKTUR (IX) ODER DIOXIM-STRUKTUR (IX')

Für den Komplex $C_5H_5Co(NO)_2$ Norbornen gibt es zwei Möglichkeiten, die beiden Nitrosyl-Gruppen mit dem Olefin und dem Cyclopentadienylkobalt-Rest zu verknüpfen. In Strukturvorschlag (IX) ist das Norbornen-Gerüst über die beiden NO-Gruppen an das Kobaltatom gebunden.

404

Da sich organische Nitrosoverbindungen leicht zu den prototropen Oximen isomerisieren, ist für den Komplex $C_5H_5Co(NO)_2Norbornen$ auch die Dioxim-Struktur (IX') möglich. Die Entscheidung zwischen beiden Strukturvorschlägen konnte mithilfe der ¹H-NMR-Spektroskopie getroffen werden.

Das komplizierte ¹H-NMR-Spektrum von $C_5H_5Co(NO)_2$ Norbornen gestattet zunächst—abgesehen von der Identifizierung des Singuletts der Cyclopentadienyl-Protonen—keine Interpretation. Gegen Strukturvorschlag (IX') spricht jedoch, dass im üblichen Resonanzbereich der Hydroxyl-Protonen von Oximen zwischen 0 und $1\tau^9$ keinerlei Signale auftreten und dass sich das ¹H-NMR-Spektrum auch nach zweistündigem Erhitzen der Verbindung in Methanol- d_4 nicht verändert.

Eine Entscheidung zwischen Dinitroso- und Dioxim-Struktur lässt sich auf folgende Weise treffen : Ersetzt man das Brückenkopf-Proton H(1) im Norbornen-Gerüst durch einen anderen Rest, so sind H(2) und H(3) nicht mehr äquivalent. Wenn sie bei der Komplexbildung an die Nitrosyl-Sauerstoffatome wandern, müsste das ¹H-NMR-Spektrum zwei Singuletts zeigen, deren Koaleszenz infolge schnellen H-Austausches aufgrund der Deuterierungsversuche auszuschliessen ist. Liegt C₅H₅Co-(NO)₂Norbornen hingegen in der Dinitroso-Struktur (IX) vor, dann sollten H(2) und H(3) miteinander koppeln und so zu einem *AB*-System führen, das durch Wechselwirkung mit H(4) noch weiter aufgespalten sein könnte.

Da Bornylen (III) mit $[C_5H_5Co(NO)]_2$ und NO nicht reagiert, mussten andere brückenkopfsubstituierte Ringolefine vom Norbornen-Typus dargestellt werden. Als brauchbarer Syntheseweg hierfür erwies sich die Diels-Adler-Reaktion von Acctylendicarbonsäureester mit 2-Bromfuran nach Gl. (2).

Das 1/1-Addukt (VII), ein hochviskoses gelbliches Öl, konnte wegen seiner geringen thermischen Stabilität nicht von Verunreinigungen befreit werden; es reagierte jedoch mit $[C_5H_5Co(NO)]_2$ und NO zum chromatographierbaren Komplex (XVII). Die Signale im ¹H-NMR-Spektrum von (XVII) lassen sich der Dinitroso-Struktur eindeutig zuordnen. Entscheidend ist, dass die Protonen H(2) und H(3) miteinander koppeln und ein gut aufgespaltenes *AB*-System ergeben (Tabellen 2 und 3).

Als Nebenprodukt der Diels-Alder-Reaktion nach Gl. (2) konnte das 2/1-Addukt von 2-Bromfuran an Acetylendicarbonsäureester isoliert werden. Aus der magnetischen Äquivalenz der beiden Carbomethoxy-Gruppen folgt, dass in (VIII) beide Bromatome in *trans*-Stellung zueinander stehen. Da nach der Verseifung des Esters unter den Bedingungen der Jodlaktonisierung¹⁰ keine Jodaddition eintritt, müssen die beiden Carbomethoxy-Gruppen hinsichtlich beider bicyclischen Ringe in *exo*-Stellung stehen. Allerdings scheint in wässrig-alkalischem Medium innerhalb eines Tages Isomerisierung zum *endo-endo*-Addukt einzutreten. Das Olefin (VIII) reagiert mit $[C_5H_5Co(NO)]_2$ und NO unter Bildung des Komplexes (XVIII), in dessen ¹H-NMR-Spektrum wie im Olefin (VIII) die Brückenkopf-Protonen sowie die Carbomethoxy-Gruppen isochron sind. Wie in (XVII) ergeben die Protonen H(2) und H(3) von (XVIII) ein *AB*-System.

Komplex (XVIII) enthält einen gewissen Lösungsmittelgehalt, der sich nicht restlos entfernen lässt. Erhitzt man die Verbindung in Cyclohexan unter Rückfluss und trocknet die Kristalle 24 Stdn. bei Raumtemperatur am Hochvakuum, so ergeben Mikroanalyse und ¹H-NMR-Spektrum gleicherweise ein Molverhältnis Komplex/ Lösungsmittel von 3/1.

exo-STRUKTUR (X) ODER endo-STRUKTUR (X')

Die ¹H-NMR-Spektren von (XVII) und (XVIII) lassen auch Schlüsse darüber zu, ob die $C_5H_5Co(NO)_2$ -Gruppe exo- oder endo-ständig an das Ringolefin gebunden ist.

Die Kopplungskonstanten zwischen allen Protonen in 2-endo- und 2-exosubstituierten Norbornen-Derivaten sind bekannt¹¹. Demnach wären in den Komplexen (XVII) und (XVIII) für J[H(2)-H(3)] 4.5-5.6 Hz zu erwarten, wenn die Protonen H(2) und H(3) nach der Komplexbildung die endo-Stellung einnehmen. Bei der exo-Stellung von H(2) und H(3) dagegen sollte J[H(2)-H(3)] 8.0-9.1 Hz sein. Da J[H(2)-H(3)] wegen der Molekülgeometrie von elektronegativen Substituenten wie Br und NO nicht wesentlich beeinflusst werden sollte¹², sprechen die beobachteten J[H(2)-H(3)]-Werte von 5.0 Hz in (XVII) bzw. 5.5 Hz in (XVIII) für die endo-Stellung von H(2) und H(3). H(3) koppelt weder in (XVII) noch in (XVIII) mit H(4). Hieraus folgt ebenfalls die endo-Ständigkeit von H(3), da im Norbornen-Gerüst die Kopplung zwischen den Protonen H(4) und H(3_{exo}) 3.5-3.8 Hz beträgt, während sie zwischen H(4) und H(3_{endo}) nicht nachzuweisen ist¹¹. Mit dem Einbau der C₅H₅Co-(NO)₂-Gruppe in exo-Stellung lässt sich auch zwanglos erklären, warum bei der Umsetzung von Bornylen (III) mit $[C_5H_5Co(NO)]_2$ und NO eine Komplexbildung durch die Methylgruppen am Kohlenstoffatom C(7) verhindert wird. Die endo-Ständigkeit der Protonen H(2) und H(3) in den Komplexen $C_5H_5Co-(NO)_2Olefin lässt sich auch durch die Kopplung von H(2) und H(3) mit H(7a) beweisen. H(2) und H(3) koppeln nämlich nur dann über 4 Bindungen hinweg mit dem zu ihnen anti-ständigen Wasserstoffatom H(7a), wenn sie in endo-Stellung stehen¹³. Verwendet man in der Dreikomponentensynthese als olefinischen Reaktionspartner 2,3-Dicarbomethoxy-2,5-norbornadien (V), so entsteht der Komplex (XV), in dessen ¹H-NMR-Spektrum die Protonen H(1) und H(4), H(2) und H(3) sowie die der beiden Methylgruppen paarweise isochron sind. In Fig.1 ist das Triplett bei <math>\tau$ 6.54 den Brük- kenkopfprotonen H(1) und H(4) und das Dublett bei τ 6.77 den Protonen H(2) und H(3) zuzuschreiben. Zur Zuordnung der Protonen H(7a) und H(7s) im Bereich von τ 8 und zur genauen Bestimmung der Kopplungskonstanten wurden entkoppelte Spektren herangezogen.

Einstrahlung der Störfrequenz auf das Zentrum des *AB*-Systems bei τ 8.02 vereinfacht das Dublett im ursprünglichen Spektrum (a) bei τ 6.77 und das Triplett bei τ 6.54 zu je einem Singulett (b). Aus der fehlenden Kopplung zwischen H(1) und H(2) bzw. H(3) und H(4) geht auch in diesem Fall die *exo*-Ständigkeit der beiden Nitrosyl-

Fig. 1. ¹H-NMR-Spektren der Protonen H(1) = H(4), H(2) = H(3), H(7a) und H(7s) von Komplex (XV) mit und ohne Entkopplung.

Protonen	(XI)	(XII)	(XIV)	(XV)	$(XVI)^{b}$	(XVII)	(XVIII)
			()				
H(1/4)	7.36 (2)	7.05 (2)	6.93 (2)	6.54 (2)	¢	4.72 (1)	4.48 (2)
H(2/3)	7.27 (2)	6.62 (2)	7.00 (2)	6.77 (2)	7.48 (2)	6.61 (2) ^{d,e} 💉	6.62 (4) ^{4, 5}
H(5/6)	9	6.98 (2)	3.88 (2)		^د (6)	• •	•
$H(7a/7s)^{4}$	^ø (6)	8.66 (2)*	$8.21(2)^{i}$	8.02 (2) ⁱ	8.74 (2) [*]		
H(8/9) ^d	()	()	()		$4.46(2)^{i}$		
CH.		6 34 (6)		6.24 (6)	(-)	6.21 (3)	6.16 (6)
0.1.3		0.2 . (-)		0.2 (()		6.25 (3)	
C.H.	5.07 (5)	5.04 (5)	5.07 (5)	5.03 (5)	5.29 (5)	5.05 (5)	5.00 (10)
~			(0)			\- /	· · · ·

CHEMISCHE VERSCHIEBUNGEN (t) UND RELATIVE INTENSITÄTEN IN DEN ¹H-NMR-SPEKTREN DER KOMPLEXE (XI), (XII), (XIV)-(XVIII)^a

^a Gesättigte Lösungen in CDCl₃ gegen i-TMS. ^b In CS₂. ^c Breite Signalgruppen bei τ 6.9–7.9; sie enthalten auch H(10). ^d Zentrum des *AB*-Systems. ^e Δv 0.16 ppm. ^f Δv 0.35 ppm. ^e 6 breite Signalgruppen bei τ 8.5–9.5. ^b Δv 0,79 ppm. ⁱ Δv 0.54 ppm. ^j Δv 0.36 ppm. ^l Δv 0.58 ppm. ^l Δv 0.09 ppm.

TABELLE 3

KOPPLUNGSKONSTANTEN (Hz) IN DEN 'H-NMR-SPEKTREN DER KOMPLEXE (XI), (XII), (XIV)-(XVIII)^a

(XI)	(XII)	(XIV)	(XV)	$(XVI)^{b}$	(XVII)	(XVIII)
0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1.7	3.4				
			1.5			
			1.4			
					5.0	5.5
1.2	1.4	1.3	1.3	1.2		
0.0	0.0	0.0	0.0	0.0	0.0	0.0
	11.0	9.4	10.1	10.4		
				6.1		
	(X1) 0.0 1.2 0.0	(XI) (XII) 0.0 0.0 1.7 1.2 1.4 0.0 0.0 11.0	(XI) (XII) (XIV) 0.0 0.0 0.0 1.7 3.4 1.2 1.4 1.3 0.0 0.0 0.0 11.0 9.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

" Gesättigte Lösungen in CDCl3 gegen i-TMS. " In CS2.

Gruppen klar hervor. Sättigung der Übergänge von H(2) und H(3) ergibt für die Protonen am Brückenkopf und an der Endomethylenbrücke ein ABX₂-System, aus dem sich die Kopplungskonstanten J[H(1)-H(7s)] und J[H(1)-H(7a)] zu 1.5 bzw. 1.4 Hz bestimmen lassen (c). Beim Einstrahlen der Resonanzfrequenz von H(1) und H(4) bilden die Protonen H(2), H(3), H(7a) und H(7s) ein weiteres ABX_2 -System (d). Zwischen H(7a) und den *endo*-Protonen H(2) und H(3) tritt dabei die erwartete W-Kopplung auf. Die Kopplungskonstante beträgt 1.3 Hz. Aus den Spektren a-d ergibt sich, dass die Protonen H(2) und H(3) *endo*-ständig sein müssen und dass der bei höherem Feld gelegene Teil des AB-Systems dem Proton H(7a) zuzuordnen ist.

DISKUSSION DER 'H-NMR-SPEKTREN DER KOMPLEXE (XI)-(XVIII)

Die Fernkopplung zwischen den Protonen H(2) bzw. H(3) und H(7a) erleich-

tert die Zuordnung der Resonanzsignale in den ¹H-NMR-Spektren der Komplexe $C_sH_sCo(NO)_2Olefin (XI)-(XVIII)$. Da die Protonen H(2) und H(3) keine weiteren Kopplungen eingehen, sind die Signale durch ihre Dublettstruktur leicht zu erkennen. Das meist sehr breite Signal der Brückenkopfprotonen H(1) und H(4) liegt im Resonanzbereich der Methinprotonen. Die Zuordnung der Teilspektren des *AB*-Systems der Protonen der Endomethylenbrücke zu H(7a) und H(7s) ist meist nicht möglich. Die chemischen Verschiebungen und Kopplungskonstanten der Protonen H(1), H(2), H(3), H(4) und H(7) sind zusammen mit den Cyclopentadienylprotonen und den übrigen Protonen der Olefinkomponente für die Komplexe (XI)-(XVIII) in der Tabelle 2 und Tabelle 3 aufgeführt.

Vergleicht man die ¹H-NMR-Spektren der Komplexe (XI)–(XVIII) miteinander und mit denen der Olefine (I)–(VIII), so lassen sich folgende Regelmässigkeiten feststellen : bei der Komplexbildung wird die Doppelbindung der Ringolefine zwischen C(2) und C(3) aufgehoben. Deshalb liegen die ¹H-NMR-Signale der Protonen H(2) und H(3) in den Kobaltkomplexen bei höherem Feld als in den freien Olefinen. Einen deutlichen Einfluss auf die Grösse dieser Verschiebung übt die Hybridisierung der Kohlenstoffatome C(5) und C(6) aus. In den Komplexen (XI), (XII) und (XVIII) sind C(5) und C(6) durch eine Einfachbindung miteinander verknüpft. Die Verschiebung der Resonanzsignale von H(2) und H(3) gegenüber den freien Olefinen beträgt in (XI) und (XVIII) rund 3.3 ppm, im Komplex (XII) hingegen aufgrund der *endo*-ständigen Carbomethoxy-Gruppen nur 2.9 ppm. In (XIV) und (XV) besteht zwischen C(5) und C(6) eine Doppelbindung. In den ¹H-NMR-Spektren dieser Komplexe sind die Signale von H(2) und H(3) gegenüber den Bicyclen (IV) und (V) um 3.7 ppm nach höherem Feld verschoben.

Die entschirmende Wirkung der C(2)-C(3)-Doppelbindung in den freien Olefinen erstreckt sich auch auf die Brückenkopfprotonen. Daher liegen die Resonanzsignale von H(1) und H(4) in den Kobaltkomplexen bei höherem Feld alsin den ungebundenen Bicyclen. Diese Verschiebung beträgt bei (XI) und (XII) etwa 0.2 ppm, bei (XIV) und (XV) etwa 0.5 ppm.

Im Gegensatz dazu tritt H(4) im Komplex (XVIII) bei angenähert dem selben τ -Wert in Resonanz wie im Olefin (VIII). Dieses abweichende Verhalten kann durch die Stereochemie von (VIII) und (XVIII) erklärt werden. Das Bromatom am C(1')-Kohlenstoff ist nur wenig vom Proton H(4) entfernt. Bei der Komplexbildung verringert sich der Abstand Br(1')-H(4), so dass die Aufhebung der Doppelbindung zwischen C(2) und C(3) durch die verstärkte entschirmende Wirkung des Bromatoms kompensiert wird.

Die chemischen Verschiebungen der Brückenkopfprotonen in den Kobaltkomplexen (XI), (XII), (XIV) und (XV) liegen zwischen τ 7.36 und 6.54, die der durch Endoxobrücken entschirmten Protonen H(4)in (XVII) und (XVIII) bei τ 4.72 bzw. 4.48.

Das Zentrum des AB-Systems der Protonen an der endo-Methylenbrücke ist in den Kobaltkomplexen gegenüber den freien Bicyclen um 0.2 ppm nach höherem Feld verschoben. Sind H(7a) und H(7s) auch in den freien Norbornenderivaten nicht äquivalent, so sind sowohl die Unterschiede in den chemischen Verschiebungen als auch die Kopplungskonstanten J[H(7a)-H(7s)] in den Komplexen grösser als in den Olefinen. J[H(2)-H(7a)] beträgt in allen Komplexen 1.3 ± 0.1 Hz. Die Signallage der Cyclopentadienylprotonen ist unabhängig von der verwendeten Olefinkomponente $(\tau 5.04 \pm 0.04)$.

TABELLE 4

MASSENSPEKTREN DER KOMPLEXE (XI), (XII), (XIV), (XV) UND (XVI)

Ion	(XI)		(XII)		(XIV)	(XIV)			(XVI	(XVI)	
	m/e	I _{rel}	m/e	Irel	m/e	Irei	m/e	Irel	m/e	I _{rel}	
[<i>M</i>] ⁺	278	31	394	25	276	45	392	36	316	13.5	
$[M - NO]^+$	248	0.1	364	3.6	246	1.8	362	2.3	286	0.1	
$[M - OCH_3]^+$			363	4.0			361	3.1			
$[M-2NO]^+$	218	0.3	334	7.9	216	2.5	332	8.3	256	0.1	
$[M - (2NO + 2H)]^+$	216	0.5									
$[C_{5}H_{5}Co(NO)_{2}C_{2}H_{2}]^{+}$					210	12	210	10.0	400		
$[(C_5H_5)_2C_0]^{+}$	189	2.2	189	7.0	189	3.2	189	1.5	189	23	
[C _s H _s Co(NO) ₂] ⁺	184	31	184	44	184	25	184	42	184	42	
$[C_{5}H_{5}Co(NO)C_{2}H_{2}]^{+}$					180	14	180	14			
$[C_7H_8(CO)(CO_2CH_3)]^+$			179	8.0				24			
$[C_7H_6(CO)(CO_2CH_3)]$		100					1//	2.4		100	
$[C_3H_5Co(NO)]^+$	154	100	154	100	154	100	154	100	154	100	
$[C_7H_8(CO_2CH_3)]^2$			151	4.8							
$[C_7H_6(CO_2CH_3)]^+$							149	4.1			
$[C_{10}H_{12}]^{+}$				45					132	5	
[C ₅ H ₅ Co]	124	52	124	40	124	1	124	52	124	68	
									117	2.4	
$\begin{bmatrix} C_9 H_7 \end{bmatrix}^2$	00	67	00	6.0	00		00		115	5.1	
$[C_3H_3C_0]^{\prime}$	98	6.7	98	6.2	98	11.2	98	5.6	98	7.4	
$\begin{bmatrix} C_7 H_7 \end{bmatrix}$	91	1.5	91	8.2	91	7.9	91	j.0	91	0	
$[C_{1}]$							84	4.8	70	4	
					77	77	78	1.0	א (18 דד	4 5 A	
$\begin{bmatrix} C_6 \Pi_5 \end{bmatrix}$	46	4.2	66	22	66	5.7	66	4	66	50	
	65	4.2	65	6.1	65	14 97	65	2.5	65	29	
$\begin{bmatrix} C_5 \Pi_5 \end{bmatrix}$	50	1.9	50	11	50	0./ 73	50	5.0	50	12.0	
Metastabile Peaks wurden Überaänae zugeordnet:	für folge	nde									
von	n	ach			(XI)) (XI	I) (A	(IV)	(XV)	(XVI)	
[<i>M</i>] ⁺	[M-NC)]†			336.	3		334.3		
[M] ⁺	E	M - 2N	0]+						281.2		
[M] ⁺	[·	C5H5Ca	(NO)	$_{2}C_{2}H_{2}]^{+}$			15	59.8	112.5		
[M]+	Ē	C5H5Co	(NO)	2]+	121.	.8 85.	9 12	22.7	86.4	107.1	
[M-NO] ⁺	[M-2N	o]+						304.5		
[M-2NO] ⁺	£	M-(2N	10 + 2	H)]+	214.	0					
[<i>M</i> -2NO] ⁺	Ľ	C5H5Ca	י[נ						46.3		
[C ₅ H ₅ Co(NO) ₂ C ₂ H ₂] ⁺	[C₅H₅Co	o(NO)	$C_{2}H_{2}]^{+}$					154.3		
$\left[C_{5}H_{5}Co(NO)C_{2}H_{2}\right]^{+}$	Ĺ	C5H2Co	b(NO)]+					131.7		
$[C_5H_5Co(NO)_2]^+$	[C5H5C0)(NO)]+	128.	9 128.	9 12	28.9	128.9	128.9	
[C₅H₅Co(NO)]+	[C₅H₅Co	⊳] †		99.	8 99.	89	9.8	99.8	99.8	
[C₅H₅Co]⁺	[C3H3Co	b] *		77.	5 77.	5 77	7.5	77.5		

MASSENSPEKTREN, IR-SPEKTREN, ELEKTRONENSPEKTREN, DIPOLMOMENTE UND REDOXVERHALTEN DER KOMPLEXE (XI)-(XVIII)

Die Massenspektren der Komplexe (XI), (XII), (XIV), (XV) und (XVI) sind

٠.

TABELLE 5

	(XI)	(XII)	(XIV)	(XV)	(XVI)	(XVIII)
v(NO)(cm ⁻¹)	1350	1348	1349	1354	1340	1352
v(cm ⁻¹)	45 900 ^d	45 900 ⁴	46 500 ^d	45 600 ^d		
$v(cm^{-1})$	33 300	33 300	32 900	32 500		
$\varepsilon_{max}(1/Mol \cdot cm) \cdot 10^{-4}$	2.21	2.60	2.13	2.19		
$v(cm^{-1})$	23 000	23 000	23 100	23 100		
$\varepsilon_{max}(1/Mol \cdot cm) \cdot 10^{-4}$	0.43	0.52	0.41	0.40		
v(cm ⁻¹)	19 200 ^d	19 400 ^d	19 200 ⁴	19 000 ^d		
μ[D]	1.90		1.42	2.50		

IR-SPEKTRENª,	ELEKTRONENSPEKTREN [®]	UND	DIPOLMOMENTE	DER	KOMPLEXE
(XI), (XII), (XIV)	–(XVIII)				

" In KBr. b ca. 10^{-4} M in Methanol. In Benzol. Schulter.

einander sehr ähnlich. Es treten aber charakteristische Unterschiede im Zerfallsmuster auf, je nachdem, ob C(5) und C(6) durch eine Einfach- oder eine Doppelbindung miteinander verknüpft sind.

Alle Massenspektren enthalten den Molekül-Peak (Tabelle 4). Der wichtigste Fragmentierungsschritt des Molekül-Ions ist die Abspaltung von Olefin, gefolgt von stufenweisem NO-Verlust. Demgegenüber hat die NO-Abspaltung aus dem Molekül-Ion nur untergeordnete Bedeutung. Dabei nehmen jedoch die relativen Intensitäten der Ionen $(M-NO)^+$ und $(M-2NO)^+$ mit der elektronenanziehenden Wirkung der Substituenten an C(5) und C(6) stark zu.

In den Massenspektren der Komplexe, die sich vom Norbornadiensystem ableiten, lässt sich ferner eine interessante retro-Diels-Alder-Reaktion feststellen. Bei der Fragmentierung entsteht durch Spaltung der Bindungen zwischen C(1) und C(2) sowie zwischen C(3) und C(4) das Ion $C_5H_5Co(NO)_2C_2H_2^+$.

Die linienreichen IR-Spektren der Komplexe $C_5H_5Co(NO)_2Olefin enthalten eine intensive Bande bei etwa 1350 cm⁻¹, die weder in den Spektren der Olefine erscheint noch den Schwingungen des zentrisch gebundenen Cyclopentadienyl-Ringes zuzuordnen ist¹⁴ (Tabelle 5). Sie muss daher auf eine <math>v(NO)$ -Schwingung zurückzuführen sein. Die grosse Verschiebung gegenüber den Valenzschwingungen organischer Nitroso-Verbindungen (v(NO) 1500–1600 cm⁻¹)¹⁵ lässt sich durch eine starke Rückbindung zwischen den *d*-Orbitalen des Kobaltatoms und dem ungesättigten System erklären.

Neben den IR-Spektren enthält Tabelle 5 die Elektronenspektren und Dipolmomente der Komplexe (XI), (XII), (XIV) und (XV). Bei der polarographischen Untersuchung einer etwa 10^{-2} M Lösung von (XI) in Methanol (Leitelektrolyt LiClO₄) wurden zwei Halbstufenpotentiale bei -0.88 und +0.75 V gefunden.

BESCHREIBUNG DER VERSUCHE

Alle Arbeiten wurden unter Stickstoffschutz und mit absoluten, N2-gesättigten

Lösungsmitteln durchgeführt. Das aus NaNO₂ und 2 N H_2SO_4 erzeugte NO wurde mit KOH-Lösung, konz. H_2SO_4 und festem KOH gereinigt und getrocknet. Als Adsorbens in der Säulenchromatographie diente Silicagel (Merck, Korngrösse 0.05–0.2 mm), das am HV von Sauerstoff befreit und unter Stickstoff aufbewahrt wurde. Die IR-Spektren wurden mit einem Perkin-Elmer-Spektrometer, Modell 21 (NaCl-Prisma) aufgenommen. Die ¹H-NMR-Messungen wurden mit den Varian-NMR-Spektrometern A60 und A100 durchgeführt. Zur Spin-Spin-Entkopplung wurde am Varian HA60 die "frequency-sweep"-Methode angewandt. Die Massenspektren wurden mit einem Atlas-CH4-Massenspektrometer (Ionenquelle TO 4) und die Elektronenspektren mit einem Cary-14-Recording-Spectrophotometer aufgenommen. Die Molgewichte wurden mit einem Dampfdruckosmometer Mechrolab bestimmt.

1. Darstellung und Charakterisierung der Olefine

2,3-Dicarbomethoxy-2,5-norbornadien (V) wurde durch Diels-Alder-Addition von Acetylendicarbonsäuredimethylester an Cyclopentadien gewonnen¹⁶.

Da Maleinsäureester bei der Reaktion mit Cyclopentadien ein Gemisch von endo- und exo-Addukten ergeben¹⁷, wurde zur Darstellung von 2,3-endo-Dicarbomethoxynorbornen (II) zunächst Maleinsäureanhydrid mit Cyclopentadien umgesetzt¹⁸. Das Anhydrid wurde mit Methanol zum Halbester solvolysiert, der mit Ag-NO₃ in Form seines Silbersalzes isoliert werden konnte. Erhitzen mit Methyljodid führte zum 2,3-endo-Dicarbomethoxynorbornen (II).

Diels-Alder-Reaktion von 2-Bromfuran mit Acetylendicarbonsäuredimethylester

11.5 g (79 mMol) 2-Bromfuran^{19,20} und 12.0 g (85 mMol) Acetylendicarbonsäuredimethylester werden in 30 ml Benzol gelöst. Die Lösung wird so lange mit Cyclohexan versetzt, bis sich zwei Phasen bilden. Dann wird 20 Stdn. am Rückfluss erhitzt. Nach dem Erkalten enthält die schwerere Phase, ein gelbliches Öl, das Monoaddukt von 2-Bromfuran an Acetylendicarbonsäuredimethylester. Das Diolefin (VII) ist sehr unrein und zersetzt sich beim Erwärmen am Hochvakuum.

Während des Kochens am Rückfluss scheidet sich am Kolbenboden das 2/1-Addukt (VIII) in Form farbloser Kristalle ab. Diese werden durch zweimaliges Umfällen aus Methylenchlorid-Pentan gereinigt. Schmp. 182° unter Rotfärbung und Zersetzung. Ausb. 1.5 g (Gef.: C, 38.40; H, 2.73; Mol.-Gew. (osmometrisch in Benzol), 440. C₁₄H₁₈Br₂O₆ ber.: C, 38.56; H, 2.77%; Mol.-Gew., 432.1.)

¹H-NMR-Spektrum von (VIII)

Chemische Verschiebungen in τ : H(2) 3.44; H(3) 3.16; H(4) 4.55; CH₃ 6.32; Kopplungskonstanten in Hz: J[H(2)-H(3)] 5.4; J[H(2)-H(4)] 0.0; J[H(3)-H(4)] 1.9; gesättigte Lösung von (VIII) in CDCl₃ gegen i-TMS als Standard.

Massenspektrum von (VIII)

 m/e^{\star} ($I_{rel}^{\star\star}$): 438 (0.3) = M^+ ; 407 (1.0); 376 (1.3); 325 (20); 297 (5.8); 269 (4.5); 244 (9.6); 216 (5.4); 148 (100).

^{*} Bezogen auf ⁸¹Br.

^{**} Bezogen auf Gesamtbrom.

Jodlaktonisierung von (VIII)¹⁰

Etwa 50 mg des 2,1-Diels-Alder-Addukts von 2-Bromfuran an Acetylendicarbonsäuredimethylester werden mit je 2 ml 2 N NaOH und Methanol verscift. Nach etwa einer Stunde haben sich die Kristalle gelöst.

Zur Jodlaktonisierung wird die überschüssige Natronlauge mit Trockeneis neutralisiert. Anschliessend versetzt man die Probe mit 10 ml 0.05 N Jodlösung und titriert den Jodüberschuss nach fünf Minuten mit Natriumarsenitlösung zurück.

Die erste Probe wurde etwa 30 Min nach der Verseifung titriert. Dabei konnte kein Jodverbrauch festgestellt werden. Die Titration der zweiten Probe erfolgte 15 Stdn. nach der Verseifung. Für 59.7 mg (0.14 mMol) Substanz wurden 0.29 mVal Jod verbraucht, d.h. pro Doppelbindung wird ein Äquivalent addiert.

2. Darstellung der Komplexe $C_5H_5Co(NO)_2Olefin$

Variante A

In eine Lösung von $C_5H_5Co(CO)_2$ und dem entsprechenden Olefin in Hexan wird NO eingeleitet. Im Laufe einer Stunde scheidet sich ein dunkler Feststoff ab. Anschliessend wird das Reaktionsgemisch auf eine Chromatographiesäule aufgetragen und so lange mit Hexan eluiert, bis alles nicht umgesetzte $C_5H_5Co(CO)_2$ ausgewaschen ist. Dann wird mit Methylenchlorid, dem etwa 5% Äther zugegeben werden, falls die Komplexe Estergruppen enthalten, chromatographiert. Die Verbindungen $C_5H_5Co(NO)_2Olefin$ wandern als tiefrote Zonen, während geringe Mengen an Zersetzungsprodukten am oberen Ende der Säule haften bleiben. Nach weitgehender Entfernung des Lösungsmittels werden die Komplexe mit Pentan ausgefällt. Zweimaliges Umfällen aus Methylenchlorid/Pentan, Waschen mit Pentan und Trocknen am Hochvakuum ergibt die analysenreinen Verbindungen. Molverhältnisse und Ausbeuten:

		(XI)	(XIV)	(X V)	(XVI)	(XVIII)
C₅H₅Co(CO)₂	mg	222	976	589	263	210
	mMol	1.23	5.42	3.27	1.46	1.17
Olefin	mg	136	1900	1350	218	982
	mMol	1.45	20	14	1.65	2.27
Ausbeute	mg	292	795	893	456	160
	% d.Th.	85	55	70	88	34

Variante B

 $[C_5H_5Co(NO)]_2$ und das entsprechende Olefin werden in Methylenchlorid gelöst. Durch diese Lösung wird ein langsamer NO-Strom geleitet, bis die Farbe von braun nach blutrot umgeschlagen ist. Dann wird das Lösungsmittel weitgehend abgezogen und das Rohprodukt durch Chromatographie in Methylenchlorid—bzw. in Methylenchlorid–Äther bei Komplexen mit Estergruppen—gereinigt. Nach einem geringen Vorlauf, der nicht umgesetztes $[C_5H_5Co(NO)]_2$ enthält, wandern die Dinitroso-Komplexe als tiefrote Zonen. Nach Einengen des Eluats werden sie mit Pentan ausgefällt. Zweimaliges Umfällen aus Methylenchlorid–Pentan, Waschen mit Pentan

•		(XI)	(XII)	(XVIII)
$[C_5H_5Co(NO)]_2$	mg	285	658	246
	mMol	0.93	2.13	0.80
Olefin	mg	403	993	385
	mMol	2.24	4.72	0.83
Ausbeute	mg	413	1127	548
	% d.Th.	80	67	85

und Trocknen am Hochvakuum führt zu den analysenreinen Verbindungen. Molverhältnisse und Ausbeuten:

DANK

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Unterstützung. Herrn Dr. H. Polzer danken wir für die Durchführung der Doppelresonanzmessungen.

LITERATUR

- 1 H. Brunner und S. Loskot, Z. Naturforsch., im Druck.
- 2 H. Brunner und S. Loskot, Angew. Chem., 83 (1971) 546; Angew. Chem. Intern. Ed., 10 (1971) 515.
- 3 S. Loskot, Dissertation, Universität Regensburg, 1972.
- 4 H. Brunner und S. Loskot, Abstr. Vth Intern. Konf. Metallorg. Chem., Moskau, 1971, S. 88.
- 5 H. Brunner, J. Organometal. Chem., 12 (1968) 517.
- 6 T. S. Piper, F. A. Cotton und G. Wilkinson, J. Inorg. Nucl. Chem., 1 (1955) 165.
- 7 E. O. Fischer und R. Jira, Z. Naturforsch., 10B (1955) 355.
- 8 R. B. King. Organometallic Syntheses, Vol. 1, Academic Press, New York-London, 1965. S. 115.
- 9 K. Gschwend-Steen, Dissertation, ETH, Zürich, 1965.
- 10 H. Stockman, J. Org. Chem., 26 (1961) 2025.
- 11 J. C. Davis und T. V. Van Auken, J. Amer. Chem. Soc., 87 (1965) 3900.
- 12 H. Booth, Tetrahedron Lett., (1965) 411.
- 13 J. Meinwald und Y. C. Meinwald, J. Amer. Chem. Soc., 85 (1963) 2541.
- 14 H. P. Fritz, Habilitationsschrift, Universität München, 1962.
- 15 W. Lüttke, Z. Elektrochem., 61 (1957) 302.
- 16 O. Diels und K. Alder, Ann., 490 (1931) 236.
- 17 J. Sauer, H. Wiest und A. Mielert, Chem. Ber., 97 (1964) 3183.
- 18 K. Alder und G. Stein, Ann., 514 (1934) 1.
- 19 R. M. Whittacker, Rec. Trav. Chim. Pays-Bas, 52 (1933) 352.
- 20 H. Gilman und G. F. Wright, J. Amer. Chem. Soc., 55 (1933) 3302.